Given the Rogers-Ramanujan continued fraction
$R(q)= \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\ddots}}}}$
where $q=\exp(2\pi i \tau)$, $|q|\lt1$
for the sake of brevity, let us introduce the following notation
$R_{0}=\frac{1}{R(q)}$
$R_{1}=\frac{1}{\Big(\frac{1}{q}\Big(\frac{1}{R(q)}-1\Big)\Big)}$
$R_{2}=\frac{1}{\Big(\frac{1}{q^2}\Big(\frac{1}{\Big(\frac{1}{q}\Big(\frac{1}{R(q)}-1\Big)\Big)}-1\Big)\Big)}$
$R_{3}=\frac{1}{\Big(\frac{1}{q^3}\Big(\frac{1}{\Big(\frac{1}{q^2}\Big(\frac{1}{\Big(\frac{1}{q}\Big(\frac{1}{R(q)}-1\Big)\Big)}-1\Big)\Big)}-1\Big)\Big)}$
up to $R_{n}$, $\frac{1}{R_{n}}=R(q^n,q)$ for natural number $n$, where $R(a,q)$ is the Generalized Rogers-Ramanujan continued fraction as pointed out by @ccorn
It is then conjectured that the following infinite series holds
$\displaystyle -\frac{R'(q)}{R(q)}=\frac{1}{R_{0}R_{1}}-\frac{2q^2}{R_{0}R^2_{1}R_{2}}+\frac{3q^5}{R_{0}R^2_{1}R^2_{2}R_{3}}-\frac{4q^9}{R_{0}R^2_{1}R^2_{2}R^2_{3}R_{4}}+\frac{5q^{14}}{R_{0}R^2_{1}R^2_{2}R^2_{3}R^2_{4}R_{5}}-\dots\tag1$
It has the ascending continued fraction equivalent
$\displaystyle -\frac{R'(q)}{R(q)}= \frac{\frac{1}{R_1}+\large{\frac{\frac{-2q^2}{R_2}+\large{\frac{\frac{3q^5}{R_3}+...}{R^2_2}}}{R^2_1}}}{R_0} \tag2$
After considering the Rogers-Ramanujan continued fraction with the factor $q^{1/5}$ and applying the identity $\frac{R'(q)}{R(q)}=\frac{1}{5q}\frac{(q;q)^5_{\infty}}{(q^5;q^5)_{\infty}}$ due to Ramanujan,we are led to the following beautiful identity
$\displaystyle \frac{(q)^5_{\infty}}{(q^5)_{\infty}}=1-\frac{5q}{(R_{0}R_{1})}+\frac{10q^3}{(R_{0}R_{1})(R_{1}R_{2})}-\frac{15q^6}{(R_{0}R_{1})(R_{1}R_{2})(R_{2}R_{3})}+\frac{20q^{10}}{(R_{0}R_{1})(R_{1}R_{2})(R_{2}R_{3})(R_{3}R_{4})}-\frac{25q^{15}}{(R_{0}R_{1})(R_{1}R_{2})(R_{2}R_{3})(R_{3}R_{4})(R_{4}R_{5})}+\dots\tag3$
$\displaystyle \frac{(q)^5_{\infty}}{(q^5)_{\infty}}=1+5\sum_{n=1}^{\infty}\frac{(-1)^n nq^{\frac{n(n+1)}{2}}}{\prod_{k=1}^{n-1}\Big(R_{k}+q^k\Big)}$
Question:How do we prove that the conjecture is true?
Remark
As entry $9$ in chapter $19$ of Ramanujan's second notebook we have the ff well known identity $\displaystyle \frac{(q)^5_{\infty}}{(q^5)_{\infty}}=1-5\sum_{n=1}^{\infty}\left(\frac{n}{5}\right) \frac{n q^n}{1-q^n}\tag{4}$
Combining $(1)$ and Ramanujan's identity $(4)$, we are immediately led to $\displaystyle \sum_{n=1}^{\infty}\left(\frac{n}{5}\right) \frac{n q^n}{1-q^n}=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} nq^{\frac{n(n+1)}{2}}}{\prod_{k=1}^{n-1}\Big(R_{k}+q^k\Big)}\tag{5}$