Let $C$ be a curve on the $xy$-plane described by the equation $x^2 + 4y^2 = 16$. If every point $(x, y)$ on $C$ is replaced by the point $\left(\frac{1}{2}x, y\right)$, what is the area enclosed by the resulting curve?
Of course, my initial reaction is to just find the area of the shape described by $\left(\frac{1}{2}x\right)^2 + 4y^2 = 16~(\text{eqn. 1)}$, but what I really should be doing is finding the area of the shape described by $(2x)^2 + 4y^2 = 16$. What is the intuition behind this so that it feels right? What am I doing to the graph by replacing $x$ with $\frac{1}{2}x$, and why is this not the same as "replacing $(x, y)$ by $(\frac{1}{2}x, y)$?
I understand that, if $(x, y) \mapsto (x', y')$, where $x' = \frac{1}{2}x$ and $y' = y$, then the equation becomes $(2x')^2 + 4y'^2 = 16$—and that makes perfect sense to me. But why is doing this the same thing as "replacing $(x, y)$ with $(\frac{1}{2}x, y)$"? There's some weird geometric disconnect that I'm just not following here.
In fact, $(\text{eqn. 1})$ has a larger area than the correct equation—which obviously shouldn't be the case if $x$ were replaced by $\frac{1}{2}x$, so that follows intuition pretty well. Am I dwelling on a semantic issue? The idea of "replacing $(x, y)$ by $\left(\frac{1}{2}x, y\right)$ and not being able to do literally that (in the equation) just doesn't jive well with me, and I'm not sure why.
(I feel as if: "You need twice as much $x$ when $x \mapsto \frac{1}{2}x$" is close. It still doesn't feel right with the equation, though. :l )
