Consider the integral $$I = \int_{||\mathbf{r}|| < d} f(x_n)\ \mathrm{d}x_1 \cdots \mathrm{d}x_n,$$ where $\mathbf{r} = (x_1, \dots, x_n)^\top$. Since $f$ only depends on $x_n$, the integral can be expressed as $$I = \int_{||\mathbf{r}|| < d} \left(\mathrm{d}x_1 \cdots \mathrm{d}x_{n-1} \right)f(x_n)\ \mathrm{d}x_n.$$ I do not know how to evaluate this integral. I think the right answer for $d = 1$ is $$I = \int_{-1}^1 (1 - x_n^2)^{(n - 1)/2} V_{n - 1} f(x_n)\ \mathrm{d}x_n,$$ where $V_n$ is the volume of the $n$ ball, as per this answer, but I am not sure where the $(1 - x_n^2)$ part comes from.
Asked
Active
Viewed 871 times
1
$$\int_{x_1^2+\ldots+x_{n-1}^2 + x_n^2 \leq d^2} f(x_n),{\rm d}x_1\cdots{\rm d}x_n = \int_{-d}^d\left(\int_{x_1^2+\ldots+x_{n-1}^2\leq d^2 - x_n^2}{\rm d}x_1\cdots {\rm d}x_{n-1}\right)f(x_n){\rm d}x_n$$
The term in the brackets is the volume of a $n-1$ dimensional sphere of radius $r = d^2-x_n^2$.
– Winther Jun 23 '17 at 00:25