Fix a unit vector $v$. Let $f(x) = \langle x, Ax \rangle$.
Then $D_v(f) = \displaystyle \lim_{t \to 0} \frac{\langle x+tv, A(x+tv)\rangle - \langle x, Ax \rangle}{t} = \lim_{t \to 0} \frac{\langle x, Ax \rangle + t \langle v, Ax\rangle + t\langle x, Av \rangle + t^2 \langle v, Av \rangle - \langle x, Ax\rangle}{t}$.
Since $A$ is real and self-adjoint, we cancel and get that the limit is $\langle v, Ax \rangle + \langle x, Av \rangle = 2\langle v, Ax\rangle = \langle v, 2Ax\rangle$.
We know that $D_v(f) = \langle v, \nabla f \rangle$, but this doesn't right away say that $\nabla f = 2Ax$. Can you see how to show that? You'll want to use that fact that $\|x\|^2 = 0 \iff x =0$.