Exercise 9.1.14 in Dummit and Foote's Abstract Algebra
Let $R$ be an integral domain and let $i, j$ be relatively prime integers. Prove that the ideal $\langle x^i-y^j\rangle$ is a prime ideal in $R[x, y]$.
[Hint. Consider the ring homomorphism $\varphi$ from $R[x, y]$ to $R[t]$ defined by mapping $x$ to $t^j$ and mapping $y$ to $t^i$. Show that an element of $R[x, y]$ differs from an element in $\langle x^i-y^j\rangle$ by a polynomial $f(x)$ of degree at most $j-1$ in $y$ and observe that the exponents of $\varphi(x^r y^s)$ are distinct for $0\leq s<j$.]
Question. Is there another elegant proof?
My Proof. Since $\varphi(x^i-y^j)=0$, we have $\langle x^i-y^j\rangle\subseteq \ker{\varphi}$. We show that $\langle x^i-y^j\rangle\supseteq \ker{\varphi}$.
Consider $\varphi(f(x, y))=\sum_{k, l}c_{kl}t^{jk+il}$. \begin{eqnarray} &\text{If}& jk_1+il_1=jk_2+il_2=\cdots=jk_n+il_n\nonumber\\ &\Rightarrow& \text{for }1\leq m\leq n, ~j(k_1-k_m)=i(l_m-l_1)...(1)\\ &\stackrel{\gcd{(i, j)}=1}{\Rightarrow}& i\mid k_1-k_m, ~j\mid l_m-l_1\nonumber\\ &\Rightarrow& k_1-k_m=is_m, ~l_m-l_1=jt_m...(2)\\ &\stackrel{\text{substitute (2) to (1)}}{\Rightarrow}& s_m=t_m...(3)\\ &\stackrel{\text{substitute (3) to (2)}}{\Rightarrow}& k_m=k_1-is_m, ~l_m=js_m+l_1...(4)\\ &\Rightarrow& c_{k_1 l_1}x^{k_1}y^{l_1}+c_{k_2 l_2}x^{k_2}y^{l_2}+\cdots+c_{k_n l_n}x^{k_n}y^{l_n}\nonumber\\ &\stackrel{(4)}{=}& c_{k_1 l_1}x^{k_1}y^{l_1}+c_{k_2 l_2}x^{k_1-is_2}y^{js_2+l_1}+\cdots+c_{k_n l_n}x^{k_1-is_n}y^{js_n+l_1}....(5) \end{eqnarray}
\begin{eqnarray} &\text{If}& f(x, y)\in \ker{\varphi}\nonumber\\ &\Rightarrow& \varphi(f(x, y))=\sum_{k, l}c_{kl}t^{jk+il}=0\nonumber\\ &\Rightarrow& c_{k_1 l_1}t^{jk_1+il_1}+c_{k_2 l_2}t^{jk_2+il_2}+\cdots+c_{k_n l_n}t^{jk_n+il_n}=0\nonumber\\ &\stackrel{(4)}{\Rightarrow}& c_{k_1 l_1}t^{jk_1+il_1}+c_{k_2 l_2}t^{jk_1-{ijs_2}+{ijs_2}+il_1}+\cdots+c_{k_n l_n}t^{jk_1-{ijs_n}+{ijs_n}+il_1}=0\nonumber\\ &\Rightarrow& (c_{k_1 l_1}+c_{k_2 l_2}+\cdots+c_{k_n l_n})t^{jk_1+il_1}=0\nonumber\\ &\Rightarrow& c_{k_1 l_1}+c_{k_2 l_2}+\cdots+c_{k_n l_n}=0...(6) \end{eqnarray}
\begin{eqnarray*} &\text{consider}&(c_{k_1 l_1}x^{k_1}y^{l_1}+c_{k_2 l_2}x^{k_2}y^{l_2}+\cdots+c_{k_n l_n}x^{k_n}y^{l_n}){+\langle x^i-y^j\rangle}\\ &\stackrel{(5)}{=}& (c_{k_1 l_1}x^{k_1}y^{l_1}+c_{k_2 l_2}x^{k_1-is_2}y^{js_2+l_1}+\cdots+c_{k_n l_n}x^{k_1-is_n}y^{js_n+l_1})+\langle x^i-y^j\rangle\\ &\stackrel{x^i+\langle x^i-y^j\rangle=y^j+\langle x^i-y^j\rangle}{=}& (c_{k_1 l_1}x^{k_1}y^{l_1}+c_{k_2 l_2}x^{k_1-{is_2}}x^{{is_2}} y^{l_1}+\cdots+c_{k_n l_n}x^{k_1-{is_n}}x^{{is_n}}y^{l_1})+\langle x^i-y^j\rangle\\ &=& (c_{k_1 l_1}+c_{k_2 l_2}+\cdots+c_{k_n l_n})x^{k_1}y^{l_1}+\langle x^i-y^j\rangle\\ &\stackrel{(6)}{=}& 0+\langle x^i-y^j\rangle\\ &\Rightarrow& x^i-y^j\mid c_{k_1 l_1}x^{k_1}y^{l_1}+c_{k_2 l_2}x^{k_2}y^{l_2}+\cdots+c_{k_n l_n}x^{k_n}y^{l_n}\\ &\Rightarrow& x^i-y^j\mid f(x, y)\\ &\Rightarrow& f(x, y)\in \langle x^i-y^j\rangle\\ &\Rightarrow& \ker{\varphi}\subseteq \langle x^i-y^j\rangle. \end{eqnarray*}
Therefore, $$R[x, y]/\langle x^i-y^j\rangle =R[x, y]/\ker{\varphi} \cong \text{Im }{\varphi}\leq R[t].$$ Since $R$ is an integral domain, so is $R[t]$. The subring $R[x, y]/\langle x^i-y^j\rangle\cong \text{Im }{\varphi}$ of $R[t]$ contains the unity of $R[t]$, hence, $R[x, y]/\langle x^i-y^j\rangle$ is also an integral domain and $\langle x^i-y^j\rangle$ is a prime ideal in $R[x, y]$ by Proposition 7.4.13.