I trying to show
$$ \lim_{x\to\infty} \left(\frac{x}{x+1} \right)^x $$
I know the answer using wolfram or a calculator, but I stuck trying to figure out how to apply L'hopital.
I trying to show
$$ \lim_{x\to\infty} \left(\frac{x}{x+1} \right)^x $$
I know the answer using wolfram or a calculator, but I stuck trying to figure out how to apply L'hopital.
Hint $$ \left(\frac{x}{x+1}\right)^x =\left(1-\frac{1}{x+1}\right)^x =\left(1-\frac{1}{u}\right)^{u-1} =\left(1-\frac{1}{u}\right)^{u}\left(1-\frac{1}{u}\right)^{-1} $$ and $x\to \infty$ iff $u\to\infty$.
HINT:
First note that we can write
$$\left(\frac{x}{x+1}\right)^x=e^{-x\log\left(1+\frac1x\right)}$$
Now apply L'Hospital's Rule to $\lim_{x\to \infty}\frac{\log\left(1+\frac1x\right)}{\frac1x}$
Hint: For such $1^\infty$ problems, you can use the trick below:
$y=e^{\ln y}$
Then you can apply L'Hospital rule to the exponent part.
As $x$ approaches infinity: $$\biggl(\frac{x}{x+1}\biggl)^x=\biggl(1-\frac{1}{x+1}\biggl)^x=e^{\biggl(-\frac{1}{x+1}\biggl)x}=e^{-1}$$ by using Euler's method.