1

I trying to show

$$ \lim_{x\to\infty} \left(\frac{x}{x+1} \right)^x $$

I know the answer using wolfram or a calculator, but I stuck trying to figure out how to apply L'hopital.

Dando18
  • 5,472

4 Answers4

3

Hint $$ \left(\frac{x}{x+1}\right)^x =\left(1-\frac{1}{x+1}\right)^x =\left(1-\frac{1}{u}\right)^{u-1} =\left(1-\frac{1}{u}\right)^{u}\left(1-\frac{1}{u}\right)^{-1} $$ and $x\to \infty$ iff $u\to\infty$.

1

HINT:

First note that we can write

$$\left(\frac{x}{x+1}\right)^x=e^{-x\log\left(1+\frac1x\right)}$$

Now apply L'Hospital's Rule to $\lim_{x\to \infty}\frac{\log\left(1+\frac1x\right)}{\frac1x}$

Mark Viola
  • 184,670
1

Hint: For such $1^\infty$ problems, you can use the trick below:

$y=e^{\ln y}$

Then you can apply L'Hospital rule to the exponent part.

Huang
  • 549
1

As $x$ approaches infinity: $$\biggl(\frac{x}{x+1}\biggl)^x=\biggl(1-\frac{1}{x+1}\biggl)^x=e^{\biggl(-\frac{1}{x+1}\biggl)x}=e^{-1}$$ by using Euler's method.