Solve for $f:\mathbb{R}\to\mathbb{R} \ \ \ $ s.t.
$$f(n)=n \ \ \forall n\in\mathbb{N}$$ $$f^{(n)}(x)\geq0 \ \ \forall n\in\mathbb{N} \ , \ x\in\mathbb{R} $$
Could you please prove that there exists an unique solution: $f(x)=x$ ?
Solve for $f:\mathbb{R}\to\mathbb{R} \ \ \ $ s.t.
$$f(n)=n \ \ \forall n\in\mathbb{N}$$ $$f^{(n)}(x)\geq0 \ \ \forall n\in\mathbb{N} \ , \ x\in\mathbb{R} $$
Could you please prove that there exists an unique solution: $f(x)=x$ ?
Suppose we have $f(n)=n$ for all integer $n$, and $f''(x)\ge0$ for all real $x$. That means $f$ is convex, i.e. $$f(\lambda u+(1-\lambda)v)\le\lambda f(u)+(1-\lambda)f(v)$$ for all real $u,v$ and all real $\lambda\in[0,1]$ (Jensen's inequality). Now take an $x\in(n-1,n).$ Since $$x=(n-x)(n-1)+(x-n+1)n,$$ Jensen's inequality with $\lambda=n-x,$ $u=n-1$ and $v=n$ gives $f(x)\le x.$ Using the same inequality for $\lambda=1/(n+1-x),$ $u=x$ and $v=n+1$ gives $$f(n)=n\le\lambda f(x)+(1-\lambda)(n+1),$$ so $f(x)\ge x$.