Given that
$$\int_{0}^{\pi/2}{\arctan(2\cos^2 x)\over \cos^2 x}\mathrm dx={\pi\over \sqrt{\phi}}\tag1$$ where $\phi={\sqrt{5}+1\over 2}$
$t=2\cos^2 x\implies\mathrm dt=-4\sin x\cos x\,\mathrm dx$
$${1\over 4}\int_{0}^{1}{\arctan t\over t\sqrt{t-t^2}}\mathrm dt\tag2$$
$t=\tan v\implies\mathrm dt=\sec^2v\,\mathrm dv$
$${1\over 4}\int_{0}^{\pi/4}{v\sec^2 v\over \tan v\sqrt{\tan v-\tan^2 v}}\mathrm dv\tag3$$
$${1\over 2}\int_{0}^{\pi/4}{v\over \sin(2v)\sqrt{\tan v-\tan^2 v}}\mathrm dv\tag4$$
Or, if we leave it in terms of $\tan t$,
$${1\over 4}\int_{0}^{\pi/4}{v(1+\tan^2 v)\over \tan v\sqrt{\tan v-\tan^2 v}}\mathrm dv\tag5$$
$$I=\int_0^2\frac{\arctan(t)}{t\sqrt{2t-t^2}}~\mathrm dt$$
– Simply Beautiful Art May 31 '17 at 12:27