Below we sketch three basic methods to solve congruence systems with noncoprime moduli.
Key idea: use $\:\!\bf \color{darkorange} C\!=$ CRT to split the congruences into equivalent congruences to prime powers, then eliminate redundant congruences (shown as up and down arrow implications below), e.g. note: $\, \color{#c00}{x\equiv 5\pmod{\!2^3}}\ \Rightarrow\ \color{#b80}{x\equiv 1\pmod{\!2^2}},\,$ so the latter is redundant and can be deleted.
$\!\begin{array}{lll} x\,\equiv\,1 \pmod{\!\color{#b80}{2^2}\cdot \color{#0a0}{3^3}}\!\!\!\!\overset{\color{darkorange}{\bf C}\!\!}\iff &\!\!\!\!\!\!\color{#b80}{x\equiv1 \pmod{\!2^2}}, &\!\!\!\!\!\ \color{#0a0}{x\equiv 1\pmod{\!3^3}}\\[-0.5em]
&\! \Uparrow & \ \:\!{||}\\[-1em]
x\equiv 13 \pmod{\!\color{#c00}{2^3}\cdot 5}\smash[t]{\overset{\color{darkorange}{\bf C}\!\!}\iff} &\!\!\!\!\!\!\color{#c00}{x\equiv 5 \pmod{\!2^3}}, \rlap{\ .\ .}&\:\! \ \raise 0.03em{||}\ .\ .\ .\ .\ .\ .\ .\ . &\!\!\! x\equiv 3\pmod{\!5}\\[-.5em]
& & \,\:\!\large \raise 0.1em{\Downarrow} & \,\,\:\!\Uparrow\\[-.2em]
x\equiv28\pmod{\!3^2\cdot \color{#90f}{5^2}}\!\smash{\overset{\color{darkorange}{\bf C}}\iff}&\!\!\!\!\!. \ .\ .\ .\ .\ .\ .\ .\ .\ .&\!\!\!\!x\equiv1\pmod{\!3^2}, &\!\!\!\color{#90f}{x\equiv 3\pmod{\!5^2}}
\end{array}$
We get an equivalent system by deleting congruences implied by $\!\color{#0a0}{\bmod 3^3}$ & $\!\color{#90f}{\bmod 5^2},\,$ viz.
$$\begin{align}
&\color{#c00}{x\equiv 5\!\!\pmod{2^3}}\\
&\color{#0a0}{x\equiv 1\!\!\pmod{3^3}}\\
&\color{#90f}{x\equiv 3\!\!\pmod{5^2}}
\end{align}\qquad\qquad$$
The moduli are now pairwise coprime so we can now apply (Easy) CRT to solve it.
The above implications are a special case of: congruences persist mod factors of the modulus (above the factors have the simple form $\,p^k\mid p^{k+n},\,$ since the moduli are all prime powers).
Or we can avoid expensive factorization of the moduli by instead applying General Easy CRT, which handles noncoprime moduli. As explained there, using this we can solve a system of congruences by repeatedly replacing any pair of congruences by an equivalent congruence.
Or scale all congruences to equivalent congruences $\!\bmod 5400$ (= moduli $\:\!\rm lcm$), then solve the scaled system using the fractional extended Euclidean algorithm (see the end of this answer).
$$\begin{align}
&\color{0a0}{x\equiv 13\!\!\!\pmod{\ \, 40}}\\
&\color{c00}{x\equiv\ \ 1\!\!\!\pmod{\!108}}\\
&\color{90f}{x\equiv 28\!\!\!\pmod{\!225}}
\end{align}\iff\!\!\!\!\!\! \begin{array}{l}
&\color{0a0}{135x\equiv 1755\pmod{\!5400}}\\
&\ \ \color{c00}{50x\equiv 50\ \ \ \ \pmod{\!5400}}\\
&\ \ \color{90f}{24 x\equiv 672\ \ \pmod{\!5500}}
\end{array}\qquad\qquad\qquad$$
$\qquad\qquad \iff \bmod 5400\!:\ x\equiv \dfrac{1755}{135} \overset{\large\frown}\equiv \overbrace{\underbrace{\dfrac{50}{\color{90f}{50}}\overset{\large\frown}\equiv \dfrac{672}{24}\overset{\large\frown}\equiv \dfrac{-1294^{\vphantom{|}}}{2_{\vphantom{|}}}}}^{\textstyle 50\!-\color{#c00}2(672) = -1294}_{\textstyle 50 - \color{#c00}2(24)\ \ =\,\ \ \ 2\ \ \ \ \ }\overset{\large\frown}\equiv\, \bbox[5px,border:1px solid #c00]{\dfrac{2053}1}$