Let $$ f(x) = \begin{cases} 0 & \text{if $x=0$ or $x = 1/n$ for some $n \in \mathbb{N}$,} \\ 1 & \text{otherwise.} \end{cases} $$ Is this function Riemann-Stieltjes integrable in $[0,1]$?
For the upper Riemann-Stieltjes integral, all $f(x)$ would be $1$ for any partition so it's $1$.
For the lower Riemann-Stieltjes integral, for some $n \in \mathbb{N}$ of which $f(1/n)=0$, is there a chance of this integral becoming different from upper integral?