We have $E\subseteq \mathbb{R}^k$ convex Suppose for some $x\in\mathbb{R}^k$, there are two distinct $p_1$ and $p_2$ s.t. $|x-p_1|=|x-p_2|=\min_{y\in E}|x-y|$.
How do i show that the function $f(t)=|x-(tp_1+(1-t)p_2)|$ where $t\in [0,1]$ is a convex ?