Considering a convex function $f:\mathbb{R}^n \rightarrow \mathbb{R}$, if it is a $\beta$-smooth function, namely $$\forall x,y\in \mathbb{R}^n, \quad f(y) \leq f(x) + \nabla f(x)^\mathrm{T}(y-x)+\frac{\beta}{2}\lVert y-x \rVert^2 $$
then we have $$\lVert \nabla f(x)\rVert^2 \leq \beta f(x) $$
This conclusion comes from a lecture note from Dimitris Papailiopoulos's course ECE 901 but without proof.
I just wanna figure out how to prove this conclusion? Thx.