I'm trying to demostrate this for a proof about two random variables(Binomial Negative): $$\sum_{j=0}^k {j+r-1 \choose j}{k-j+s-1 \choose k-j}= {k+r+s-1 \choose k}$$
I know the basics about combinatory so: $$\sum_{j=0}^k {j+r-1 \choose j}\cdot{k-j+s-1 \choose k-j}= \frac{(j+r-1)!}{j!(r-1)!}\cdot\frac{(k-j+s-1)!}{(k-j)!(s-1)!}$$
But i don't know how to arrange them for the proof.