My book says that in
$$\mathbb{Z}_4\times\mathbb{Z}_6/\langle(0,1)\rangle$$
since we're setting everything in $\langle(0,1)\rangle$ to $0$, it's like. That is, the whole second factor $\mathbb{Z}_6$ of $\mathbb{Z}_4\times\mathbb{Z}_6$ is collapsed, leaving just the factor $\mathbb{Z}_4$.
Then, for
$$\mathbb{Z}_4\times\mathbb{Z}_6/\langle(0,2)\rangle$$
It says that the same thing happens, but now $\mathbb{Z}_6$ is collapsed by a subgroup of order $3$, therefore givinf a group in the second factor of order $2$, so it's isomorphic to $\mathbb{Z}_4\times\mathbb{Z}_2$ I tried to visualize the cosets for both groups, here they are:
$$\mathbb{Z}_4\times\mathbb{Z}_6/\langle(0,1)\rangle$$
$$H = \{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5)\}$$ $$H_1 = \{(1,0),(1,1),(1,2),(1,3),(1,4),(1,5)\}$$ $$H_2 = \{(2,0),(2,1),(2,2),(2,3),(2,4),(2,5)\}$$ $$H_3 = \{(3,0),(3,1),(3,2),(3,3),(3,4),(3,5)\}$$
And
$$\mathbb{Z}_4\times\mathbb{Z}_6/\langle(0,2)\rangle$$
$$H = \{(0,0),(0,2),(0,4)\}$$ $$H_1 = \{(1,0),(1,2),(1,4)\}$$ $$H_2 = \{(2,0),(2,2),(2,4)\}$$ $$H_3 = \{(3,0),(3,2),(3,4)\}$$
But I cannot visualize this 'collapse' thing