-1

The question is to evaluate $$\lim_{x \to \infty} (3^x+7^x)^{1/x}$$

I tried evaluating the limit as $exp(\lim_{x\to \infty} (3^x+7^x-1)(1/x))$.I couldn't proceed after this.Any help shall be highly appreciated. Thanks.

Navin
  • 2,705

3 Answers3

6

$7 = (7^x)^{1/x} \le (3^x+7^x)^{1/x} \le (7^x+7^x)^{1/x} = 2^{1/x}7$, so the limit is $7$.

mathworker21
  • 35,247
  • 1
  • 34
  • 88
2

Well, $7 < (3^x+7^x)^{1/x} = 7((\frac{3}{7})^x + 1)^{1/x} < 7(2)^{1/x} \rightarrow 7$ when $x\to \infty$.

user1551
  • 149,263
GAVD
  • 7,436
1

HINT:

You're on the right track - almost.

If you wanted to keep going the way you are consider,

$$e^{lim_{x \to \infty}\bigg(\frac{ln(3^x + 7^x)}{x}\bigg)}$$

Next, you can apply logarithm laws again, and then l'Hopital's rule.

Retty
  • 497