0

Please check my proof

The original problem ask to determine sinx is uniformly continuous on$(-\infty, \infty )$ and if it is, Prove it

I think this function is uniformly continuous

Ok let do it .

Let $\epsilon ,\delta >0 $

$$|x-y|<\delta \rightarrow |f(x)-f(y)<\epsilon $$

$$ \rightarrow |sinx-siny|<\epsilon $$

Use identity

$$ \rightarrow |2cos(\frac{(x+y)}{2})sin(\frac{(x-y)}{2})|$$

$$ \rightarrow cos(\frac{(x+y)}{2})sin(\frac{(x-y)}{2})<\frac{\epsilon }{2}|$$

Choose $\delta =\frac{\epsilon }{2}$

then

$$ |x-y|<\delta \rightarrow 2|cos\frac{(x+y)}{2}sin\frac{(x-y)}{2}|<2\frac{\epsilon }{2}|=\epsilon $$

Then the function is uniformly continuous on$(-\infty ,\infty )$

Lingnoi401
  • 1,791

0 Answers0