How does one prove that \begin{equation} x T = 0 \Longleftrightarrow T = c \delta_0, \end{equation} with $T \in \mathcal{D}'(\mathbb{R})$?
I see why we have "$\Longleftarrow$ " ($T = c\delta_0 \Leftrightarrow xT = xc\delta_0 \Leftrightarrow \langle xT, \phi \rangle = \langle c\delta_0, x\phi \rangle$ for all $\phi \in \mathcal{D}(\mathbb{R})$ and $\langle \delta_0, x\phi \rangle = 0$ therefore $xT = 0$).