1

Can you explain me how to solve $ \lim_{n\rightarrow +\infty} \frac{ n!}{ ((n-k)!.n^k)}$

Ali
  • 2,340

2 Answers2

2

Stirling's formula isn't required: $$\frac{n!}{(n-k)!}=n(n-1)\dotsm(n-k+1)\sim_\infty n^k, \enspace\text{so}\quad\frac{n!}{(n-k)!\,n^k}\sim_\infty\frac{n^k}{n^k}=1. $$

Bernard
  • 179,256
1

$$\dfrac{n!}{(n-k)!\cdot n^k}=\dfrac{\prod_{r=0}^{k-1}(n-r)}{n^k}=\prod_{r=0}^{k-1}\left(1-\dfrac rn\right)$$