Let $\mathfrak{g}$ be a finite dimensional Lie algebra over $\mathbb{C}$ and let $\operatorname{Rad}(\mathfrak{g})$ denote the radical of $\mathfrak{g}$; the unique maximal solvable ideal of $\mathfrak{g}$.
If $\mathfrak{h}$ is an ideal of $\mathfrak{g}$, I want to know about the relation between $\operatorname{Rad}(\mathfrak{g/h})$ and $\operatorname{Rad}(\mathfrak{g})/\operatorname{Rad}(\mathfrak{h})$; what are the necessary and sufficient conditions for $\operatorname{Rad}(\mathfrak{g/h})$ to be isomorphic to $\operatorname{Rad}(\mathfrak{g})/\operatorname{Rad}(\mathfrak{h})$? Is $\operatorname{Rad}(\mathfrak{g/h})$ always isomorphic to $\operatorname{Rad}(\mathfrak{g})/\operatorname{Rad}(\mathfrak{h})$?