Check if the integral converges or not.
$\int_{-1}^1-x \ln |x|dx$
Since $ \ln 0 $ is not defined, we split the given integral into two, one from -1 to 0 and second from 0 to 1
$\lim_{b \to 0^-} \int _{-1}^b -x \ln|x| dx + \lim_{b \to 0^+} \int _{b}^1 -x \ln|x| dx $ $ \lim_{b \to 0^-} -(\ln|b|.\frac{b^2}{2}-\frac{b^2}{4}+\frac{1}{4})+\lim_{b \to 0^+} -(-\ln|b|.\frac{b^2}{2}+\frac{b^2}{4}-\frac{1}{4}) $
$\lim _{b \to 0^-} - \ln (-x) \cdot \frac{ b^2}{2}+\lim _{b \to 0^+} \ln (x) \cdot \frac{ b^2}{2}$
$\infty + \infty$
Therefore the integral diverges, but the correct answer is 0
Pls note, i am using android tablet for the first time and having tough time typing latex, pls let me know how to speed up the process