The question is as follows:
Let $\theta \in (0, \pi)$ and $I=\int _0^{\pi }\frac{x}{1+\cos \theta \cdot \sin x} \ \mathrm{d}x$
Remark: $\forall \theta \in (0, \pi) \wedge \forall x \in [0, \pi]$ we have $1+\cos \theta \cdot \sin x >0$
a) With the help of a $x=\pi-t$ change of variable, show that: $$I=\frac{\pi}{2}\int _0^{\pi }\frac{1}{1+\cos \theta \cdot \sin x} \ \mathrm{d}x$$
b) Show that: $$I=\pi \int _0^{\frac{\pi}{2} }\frac{1}{1+\cos \theta \cdot \cos x} \ \mathrm{d}x$$
c) Show that: $$I=\frac{\pi \theta}{\sin{\theta}}$$
I would talk about what I have done, but I wasn't able to do much other than:
\begin{align} \int _0^{\pi }\frac{x}{1+\cos \theta \cdot \sin x} \ \mathrm{d}x &= -\int _0^{\pi }\frac{\pi-t}{1+\cos \theta \cdot \sin{(\pi-t)}} \ \mathrm{d}t \\\\ &= -\int _0^{\pi }\frac{\pi-t}{1+\cos \theta \cdot \sin{t}} \ \mathrm{d}t \\\\ &= \int_0^{\pi}\frac{t}{1+\cos \theta \cdot \sin{t}} \ \mathrm{d}t-\int _0^{\pi }\frac{\pi}{1+\cos \theta \cdot \sin{t}} \ \mathrm{d}t \\ \end{align}
Any help would be appreciated, thanks.