Prove that $\sin\frac{\pi}{7}\sin\frac{2\pi}{7}\sin\frac{3\pi}{7}=\frac{\sqrt{7}}{8}$.
What I've tried doing : If $\theta=\frac{\pi}{7}:$ $$ 3\theta+4\theta=\pi $$ This allowed me to prove that : $$ \tan^2\frac{\pi}{7}+\tan^2\frac{2\pi}{7}+\tan^2\frac{3\pi}{7}=21 \\ \cot^2\frac{\pi}{7}+\cot^2\frac{2\pi}{7}+\cot^2\frac{3\pi}{7}=5 $$ Is my reasoning wrong or is this entirely the wrong way to approach this question ?