For any decreasing function $u$ we have
$$y \leq x \implies u(y) \geq u(x).$$
If we assume additionally that $u$ has an inverse $u^{-1}$, then $u^{-1}$ is decreasing, and therefore
$$w := u(y) \geq u(x)=:v \implies y = u^{-1}(w) \leq u^{-1}(v)=x.$$
Consequently, we have
$$y \leq x \Leftrightarrow u(y) \leq u(x) \tag{1}$$
for any bounded invertible function $u$. Hence,
$$\begin{align*} \omega \in [X \leq x] &\Leftrightarrow X(\omega) \leq x \\ &\stackrel{(1)}{\Leftrightarrow} u(X(\omega)) \geq u(x) \\ &\Leftrightarrow \omega \in [u(X) \geq u(x)] \end{align*}$$ which shows that $$[X \leq x] = [u(X) \geq u(x)]$$ for any bounded invertible function $u$.