7

Recently, a friend challenged me to find the general solution of the following differential equation:

$$\frac{d^2 y}{dx^2}+(x+1)\cdot \frac{dy}{dx}+5x^2\cdot y=0 \tag{1}$$

This is a second-order linear ordinary differential equation.

I have tried putting this ODE into the form of a Sturm-Liouville Equation by multiplying both sides by $e^{\int (x+1)~dx}$ to obtain: $$e^{\frac{x^2}{2}+x}\cdot\frac{d^2 y}{dx^2}+(x+1)\cdot e^{\frac{x^2}{2}+x}\cdot \frac{dy}{dx}+5x^2\cdot e^{\frac{x^2}{2}+x}\cdot y=0$$ By the reverse product rule: $$\frac{d}{dx}\left(e^{\frac{x^2}{2}+x}\cdot y'(x)\right)+5x^2\cdot e^{\frac{x^2}{2}+x}\cdot y=0 \tag{2}$$ Now, it is in Sturm-Liouville form, however I am unsure how to proceed from here.


Therefore, I have instead tried to do some substitution on the differential equation to eliminate the first order term to obtain this form: $$\frac{d^2 y}{dx^2}+q(x)\cdot y=0$$ Therefore, I have tried using the substitution: $$y=e^{-\frac{(1+x)^2}{4}}\cdot z$$ $$\ln y=\ln{z}-\frac{(1+x)^2}{4}$$ Differentiating implicitly both sides w.r.t $x$: $$\frac{y'}{y}=\frac{z'}{z}-\frac{1}{2}(x+1) \tag{3}$$ Differentiating again: $$\frac{y\cdot y''-(y')^2}{y^2}=\frac{z\cdot z''-(z')^2}{z^2}-\frac{1}{2}$$ Thus: $$\frac{y''}{y}-\left(\frac{y'}{y}\right)^2=\frac{z''}{z}-\left(\frac{z'}{z}\right)^2-\frac{1}{2}$$ Substituting $(3)$: $$\frac{y''}{y}=\left(\frac{z'}{z}-\frac{1}{2}(x+1)\right)^2+\frac{z''}{z}-\left(\frac{z'}{z}\right)^2-\frac{1}{2}$$ Expanding gives: $$\frac{y''}{y}=\left(\frac{z'}{z}\right)^2-\left(\frac{z'}{z}\right)(x+1)+\frac{1}{4}(x+1)^2+\left(\frac{z''}{z}\right)-\left(\frac{z'}{z}\right)^2-\frac{1}{2}$$ $$\frac{y''}{y}=-\left(\frac{z'}{z}\right)(x+1)+\frac{1}{4}(x+1)^2+\left(\frac{z''}{z}\right)-\frac{1}{2} \tag{4}$$ Going back to our original ODE $(1)$: $$y''+(x+1)y'+5x^2\cdot y=0$$ $$\frac{y''}{y}+(x+1)\frac{y'}{y}+5x^2=0$$ Substituting $(3)$ and $(4)$ gives: $$-\left(\frac{z'}{z}\right)(x+1)+\frac{1}{4}(x+1)^2+\left(\frac{z''}{z}\right)-\frac{1}{2}+(x+1)\left[\frac{z'}{z}-\frac{1}{2}(x+1)\right]+5x^2=0$$ Cancelling terms gives: $$\left(\frac{z''}{z}\right)-\frac{1}{4}(x+1)^2-\frac{1}{2}+5x^2=0$$ Which gives the ODE: $$z''+\left[5x^2-\frac{1}{2}-\frac{1}{4}(x+1)^2\right]z=0$$ When the $z$ term is expanded, it gives: $$z''+\frac{1}{4}(19x^2-2x-3)z=0 \tag{5}$$ I tried identifying this ODE as a known type, however I could not. Therefore, I am stuck at this point.


Note that I am trying to avoid a series solution for this differential equation. I am aware that the result will be in terms of non-elementary functions. Wolfram|Alpha suggests that the solution will be in terms of the Hermite polynomial $H_n(z)$ defined as: $$H_n(z)=\frac{n!}{2\pi i} \oint e^{-t^2+2tz}\cdot t^{-n-1}~dt$$ And the Kummer confluent hypergeometric function $_1F_1(a;b;x)$ defined as: $$_1F_1(a;b;x)=1+\frac{a}{b}x+\frac{a(a+1)}{b(b+1)}\frac{x^2}{2!}+\cdots=\sum_{k=0}^{\infty} \frac{(a)_k}{(b)_k}\frac{x^k}{k!}$$ Where $(a)_k$ and $(b)_k$ are Pochhammer Symbols.

In conclusion, I would appreciate some guidance on how to continue solving this ODE analytically. I was thinking that equation $(5)$ seems simpler to solve from what we have, however if $(1)$ seems easier, please feel free to continue from the original ODE.

Thanks in advance.


Edit:

I figured that I could simplify $(5)$ further by completing the square: $$\frac{d^2 z}{dx^2}+\left[\frac{19}{4}\left(x-\frac{1}{19}\right)^2-\frac{29}{38}\right]z=0$$ And then applying the substitution $u=x-\frac{1}{19}$ and $du=dx$. Evaluating $\frac{d^2 z}{dx^2}$: $$\frac{dz}{dx}=\frac{dz}{du}\cdot \frac{du}{dx}=\frac{dz}{du}$$ Thus, differentiating w.r.t $x$ gives: $$\frac{d^2 z}{dx^2}=\frac{d}{dx}\left(\frac{dz}{du}\right)=\frac{d}{du}\left(\frac{dz}{du}\right)\frac{du}{dx}=\frac{d^2 z}{du^2}$$ Therefore, we reduce it to the form: $$\frac{d^2 z}{du^2}+\left[\frac{19}{4}u^2-\frac{29}{38}\right]z=0 \tag{6}$$

1 Answers1

7

I figured it out. Equation $(6)$ can be put into the form of a Weber Differential Equation defined as: $$\frac{d^2 y}{dx^2}+\left(\nu + \frac{1}{2}-\frac{x^2}{4}\right)y=0 \tag{7}$$ With general solution: $$y(x)=c_1D_{\nu}(x)+c_2 D_{-\nu-1}(ix)$$ Where $D_{\nu}(x)$ represents the parabolic cylinder function.

Substituting $\gamma=\sqrt[4]{-19}\cdot u$ and $d\gamma =\sqrt[4]{-19}~du$ puts it in the form of $(7)$. Let's evaluate $\frac{d^2 z}{du^2}$: $$\frac{dz}{du}=\frac{dz}{d\gamma}\cdot \frac{d\gamma}{du}=\frac{dz}{d\gamma}\cdot \sqrt[4]{-19}$$ $$\frac{d^2 z}{du^2}=\frac{d}{du}\left(\frac{dz}{d\gamma}\cdot \sqrt[4]{-19}\right)=\frac{d}{d\gamma}\left(\frac{dz}{d\gamma}\cdot \sqrt[4]{-19}\right)\cdot \frac{d\gamma}{du}=\frac{d^2 z}{d\gamma^2}\sqrt{19}\cdot i$$ Substituting into $(6)$ gives: $$i \frac{d^2 z}{d\gamma^2}\sqrt{19}+\left[\frac{19}{4}\cdot \frac{\gamma^2}{\sqrt{19}i}-\frac{29}{38}\right]z=0$$ Dividing both sides by $i\sqrt{19}$ gives: $$\frac{d^2z}{d\gamma^2}+\left[-\frac{\gamma^2}{4}+\frac{29i}{38\sqrt{19}}\right]z=0 \tag{8}$$ Thus, it is now in the form of $(7)$. Hence, we let $\nu=\frac{29i}{38\sqrt{19}}-\frac{1}{2}$ and obtain the general solution for $z$ as a function of $\gamma$: $$\large z(\gamma)=c_1\cdot D_{\frac{29i}{38\sqrt{19}}-\frac{1}{2}}(\gamma)+c_2\cdot D_{-\frac{1}{2}-\frac{29i}{38\sqrt{19}}}(i\gamma)$$ Thus, if we substitute back for $u$, we obtain: $$\large z(u)=c_1\cdot D_{\frac{29i}{38\sqrt{19}}-\frac{1}{2}}(\sqrt[4]{-19}\cdot u)+c_2\cdot D_{-\frac{1}{2}-\frac{29i}{38\sqrt{19}}}(i\sqrt[4]{-19}\cdot u)$$ Substituting back for $x$, we obtain: $$z(x)=c_1\cdot D_{\frac{29i}{38\sqrt{19}}-\frac{1}{2}}\left(\sqrt[4]{-19}\cdot \left(x-\frac{1}{19}\right)\right)+c_2\cdot D_{-\frac{1}{2}-\frac{29i}{38\sqrt{19}}}\left(i\sqrt[4]{-19}\cdot \left(x-\frac{1}{19}\right)\right)$$ Finally, substituting back for $y$, we obtain: $$y\cdot e^{\frac{(1+x)^2}{4}}=c_1\cdot D_{\frac{29i}{38\sqrt{19}}-\frac{1}{2}}\left(\sqrt[4]{-19}\cdot \left(x-\frac{1}{19}\right)\right)+c_2\cdot D_{-\frac{1}{2}-\frac{29i}{38\sqrt{19}}}\left(i\sqrt[4]{-19}\cdot \left(x-\frac{1}{19}\right)\right)$$ Which gives the explicit solution: $$\small \bbox[5px,border:2px solid #C0A000]{y(x)=c_1\cdot D_{\frac{29i}{38\sqrt{19}}-\frac{1}{2}}\left(\sqrt[4]{-19}\cdot \left(x-\frac{1}{19}\right)\right)\cdot e^{-\frac{(1+x)^2}{4}}+c_2\cdot D_{-\frac{1}{2}-\frac{29i}{38\sqrt{19}}}\left(i\sqrt[4]{-19}\cdot \left(x-\frac{1}{19}\right)\right)\cdot e^{-\frac{(1+x)^2}{4}}} \tag{9}$$ This is equivalent to the solution given by Wolfram|Alpha, but I find this solution to be a neater one.