I'm reading Evans' book on PDE and I'm having troubles understanding one estimate.
He defines the fundamental solution to Laplace' equation as
$$ \Phi(x) = \begin{cases} -\frac{1}{2\pi} \, \log(|x|), \, & n=2, \\ \frac{1}{n \, (n-2) \, \omega_n} \, \frac{1}{|x|^{n-2}}, \, & n\geq 3, \end{cases} $$
where $\omega_n$ is the volume of the $n$-ball.
For the solution of Poisson's equation $ -\Delta u = f$ he computes the Laplace acting on the convolution of $f$ and $\Phi$, involving this estimate:
$$ \bigg|\int_{B(0,\varepsilon)} \Phi(y) \, \Delta_y f(x-y) \, dy \bigg| \leq C \, \lVert D^2f \rVert_{L^\infty} \int_{B(0,\varepsilon)} |\Phi(y)| \, dy \leq \begin{cases} C \, \varepsilon^2 \, |\log(\varepsilon)|, & n=2, \\ C \, \varepsilon^2, & n\geq 3. \end{cases} $$
How do you obtain the last inequality?