How to proof that: $$\langle X\cdot M , Y\cdot N\rangle_T = \int^T_0 XY d \langle M, N\rangle$$ for $X,Y$ - simple processes and $M,N \in M^2_c$.
If I need to prove that $$\langle X\cdot M \rangle_T = \int^T_0X^2 d \langle M\rangle$$ then knowing that DM decomposition tells us that: $X^2 - \langle X\rangle$ is a martingale, I can take conditional expectation and show that: $$ \mathbb{E}\left[(X \cdot M)_T^2 - \langle X\cdot M \rangle_T - (X \cdot M)_S^2 + \langle X\cdot M \rangle_S | \mathcal{F}_S\right] = 0$$ What is the way to deal with $\langle X\cdot M , Y\cdot N\rangle_T$?
I suspect that working the same way I will get something similar, but I can not continue: $$ \mathbb{E}\left[(X \cdot M)_T(Y \cdot N)_T - \langle X\cdot M , Y\cdot N \rangle_T - (X \cdot M)_S(Y \cdot N)_S + \langle X\cdot M, Y\cdot N \rangle_S | \mathcal{F}_S\right] = 0$$ rewriting terms as martingale transforms. Is this a case when we consider simpler case and look at when $X=Y, M=N$?