As commented, there are several approaches. However, if you want to follow the hint in brute-force fashion, then integrate by parts four times retaining constants of integration. Solve for the constants that give the desired quadrature rule and eliminate terms where $f'$, $f''$ and $f'''$ appear.
Clearly, this is not an elegant approach here, but in other contexts the technique is useful.
For the first, step take
$$\int_{-h}^h f(x) \, dx = \int_{-h}^0 f(x) \, dx + \int_{0}^h f(x) \, dx = \int_{0}^h f(x-h) \, dx + \int_{0}^h f(x) \, dx. $$
Perform integration by parts using $dv = dx \implies v = x + \text{const.}$ to obtain
$$\int_{-h}^h f(x) \, dx \\ = \left. (x + A_1)f(x)\right|_{0}^h + \int_{0}^h (x + A_1) f'(x-h)\,dx + \left. (x + B_1)f(x)\right|_{0}^h - \int_{0}^h (x + B_1) f'(x)\,dx \\ = (h + B_1) f(h) + (h + A_1 - B_1) f(0) - A_1 f(-h) \\ - \int_{0}^h (x + A_1) f'(x-h)\,dx -\int_{0}^h (x + B_1) f'(x)\,dx$$
Put $A_1 = -h/3$ and $B_1 = -2h/3$ to obtain
$$\int_{-h}^h f(x) \, dx = \frac{h}{3} \left(f(-h) + 4 f(0) + f(h) \right) - E,$$
where
$$E = \int_{0}^h (x + A_1) f'(x-h)\,dx + \int_{0}^h (x + B_1) f'(x)\,dx.$$
Now integrate by parts three more times to obtain
$$\begin{align}E &= \left.\left(\frac{1}{2} x^2 + A_1 x + A_2\right)f'(x-h) \right|_0^h \\ &+ \left.\left(\frac{1}{2} x^2 + B_1 x + B_2\right)f'(x) \right|_0^h \\ &- \left.\left(\frac{1}{6} x^3 + \frac{1}{2}A_1 x^2 + A_2x + A_3\right)f''(x-h) \right|_0^h \\ &- \left.\left(\frac{1}{6} x^3 + \frac{1}{2}B_1 x^2 + B_2x + B_3\right)f''(x) \right|_0^h \\ &+ \left.\left(\frac{1}{24} x^4 + \frac{1}{6}A_1 x^3 + \frac{1}{2}A_2x^2 + A_3x + A_4\right)f'''(x-h) \right|_0^h \\ &+ \left.\left(\frac{1}{24} x^4 + \frac{1}{6}B_1 x^3 + \frac{1}{2}B_2x^2 + B_3x + B_4\right)f'''(x)\right|_0^h \\ &- \int_0^h \left(\frac{1}{24} x^4 + \frac{1}{6}A_1 x^3 + \frac{1}{2}A_2x^2 + A_3x + A_4\right)f^{(4)}(x-h) \, dx \\ &- \int_0^h \left(\frac{1}{24} x^4 + \frac{1}{6}B_1 x^3 + \frac{1}{2}B_2x^2 + B_3x + B_4\right) f^{(4)}(x) \, dx \end{align}$$
Solve for $A_2, A_3, A_4, B_2, B_3, B_4$ to eliminate the boundary terms and apply the bound $\|f^{(4)} \|_\infty$ inside the integrals to obtain the desired result
$$|E| \leqslant \frac{h^5}{90} \|f^{(4)} \|_\infty.$$