Let $A \subset \Bbb R^2$ be the graph $f: \Bbb R \to \Bbb R$ given by: $$ f(x) = \begin{cases} \text{sin($\frac{1}{x}$)}, & \text{if $x \in [-1,1]\setminus \{0\}$} \\[2ex] 5, & \text{if $x=0$} \end{cases} $$
Let $S = A \cup\{(0,y) \in \Bbb R^2 : -1 \le y \le 1\}$. Is $S$ Lebesgue measurable on the plane?
I see that $f(x)$ is continuous in the plane so I am thinking that is is measurable, but the point $(0,5)$ defined for the graph is throwing me off.