Setup:
Let $k\in{}\mathbb{N}$ be a natural number, and let $\mathrm{M}_{k,k}(\mathbb{R})$ denote the set of $k\times{}k$ matrices over the field of real numbers.
Let $X\in{}\mathrm{M}_{k,k}(\mathbb{R})$ be a symmetric, positive definite matrix.
Let $L\in{}\mathrm{M}_{k,k}(\mathbb{R})$ be the lower triangular Cholesky factor of $X$, such that $X = LL'.$
Question:
What is the analytical expression for the $[k(k+1)/2] \times{} [k(k+1)/2]$ Jacobian matrix
$$\frac{\partial{}\mathrm{vech}(LL')}{\partial{}\mathrm{vech}(L)'}$$
where $\mathrm{vech}(\cdot{})$ is the half-vectorization operator that stacks the lower triangular part of its square argument matrix.