In John Fraleigh's book, A First Course In Abstract Algebra Exercises 15.7 and 15.11, one shows that $$ (\mathbb{Z} \times \mathbb{Z})/ \langle (1,2)\rangle \cong \mathbb{Z} \times \mathbb{Z}_1 \cong \mathbb{Z} \ \ \ \ \ \mbox{ and } \ \ \ \ \ (\mathbb{Z} \times \mathbb{Z})/ \langle (2,2)\rangle \cong \mathbb{Z} \times \mathbb{Z}_2 $$ One does this with the first isomorphism theorem. With the same idea I proved for example that $$ (\mathbb{Z} \times \mathbb{Z})/ \langle (2,3)\rangle \cong \mathbb{Z} \times \mathbb{Z}_1 \cong \mathbb{Z} \ \ \ \ \ \mbox{ and }\ \ \ \ \ (\mathbb{Z} \times \mathbb{Z})/ \langle (2,4)\rangle \cong \mathbb{Z} \times \mathbb{Z}_2 $$ So I conjectured that $(\mathbb{Z} \times \mathbb{Z})/ \langle (m,n)\rangle \cong \mathbb{Z} \times \mathbb{Z}_{k}$ where $k=\mathrm{gdc}(m,n)$. For the previous four cases, the homomorphism $\phi: \mathbb{Z}\times \mathbb{Z} \to \mathbb{Z} \times\mathbb{Z}_k$ given by $$ \phi(x,y)=\left(\frac{nx-my}{k}, \ x \ \ (\mathrm{mod} \ k) \right) $$ is surjective with kernel =$\langle (m,n)\rangle$. However, this is not the case when $(m,n)=(4,6)$. So, I cannot use what I did for the four cases to prove the general case.
What I want to know is if my conjecture is true. If so, how can I give a general homomorphism? If it is not true, how can I find $k$, such that $(\mathbb{Z} \times \mathbb{Z})/ \langle (m,n)\rangle \cong \mathbb{Z} \times \mathbb{Z}_k$?
Thanks in advance for any help/hint/comment!