I want to show that $\| \cdot \|_p$ is equivalent to $\| \cdot \|_q$ iff $p=q$ on $\mathbb{R}$.
I think the best way to do this is via a contradiction. Supposing that $\| \cdot \|_p \leq \alpha \| \cdot \|_q \leq \beta \| \cdot \|_p$, we have $$\left( \int_{\mathbb{R}} \left| f \right|^p d\mu \right)^{1/p} \leq \alpha \left( \int_{\mathbb{R}} \left| f \right|^q d\mu \right)^{1/q} \leq \beta \left( \int_{\mathbb{R}} \left| f \right|^p d\mu \right)^{1/p}.$$ I'm then thinking of applying Holder's inequality, but haven't been successful .