Background Information:
I am writing this to clarify the proof in the first part of @Paramanand Singh's answer and add my own understanding to it.
When I was reading his answer, I think his idea is very interesting, but for some points, for example the claim that $a_n = 1 - \frac{z^2}{n^2} + o(1/n^2)$, they don't seem obvious to me, and I decide to restart the proof given his idea.
Below is my attempt based upon @Paramanand Singh's answer.
My Attempt:
First of all, if we define the exponential function and the constant $e$ as
Definition 1.
$$ \forall z \in \mathbb{C}, \exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
by ratio test it is easy to show that this series indeed converges for all $z \in \mathbb{C}$.
Definition 2.
$$ e := \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}$$
Then we have the following important theorems and lemmas:
Theorem 1. (Euler's formula)
$$\forall x \in \mathbb{R}, e^{ix} = \cos x + i \sin x$$
Theorem 2. (De Moivre's formula)
$$\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}, (\cos x + i \sin x)^n = \cos nx + i \sin nx$$
Lemma 1. (multiplication rule)
- $\forall z,w \in \mathbb{C}, \exp(z+w) = \exp(z) \exp(w)$.
Proof is easy by Cauchy Product.
- $\forall z \in \mathbb{C}, 1 = \exp(z) \exp(-z)$.
Lemma 2. If $\displaystyle \lim_{n\to \infty} n(a_n-1)=0$, then $\displaystyle \lim_{n\to \infty} a_n^n=1$. For proof, see this answer.
Lemma 3. (real exponential function as a power of $e$)
$$\forall x \in \mathbb{R}, \exp(x) = e^x$$
For sketch of proof, see this answer.
Then, by Lemma 2, fix some $z \in \mathbb{C}$ and still consider the sequence
$$a_n = \frac{ 1 + \frac{z}{n}}{\exp(\frac{z}{n})}$$
and we have
$$\begin{aligned}
\frac{ 1 + \frac{z}{n}}{\exp\left(\frac{z}{n}\right)}
&= \left(1 + \frac{z}{n} \right) \left(\exp\left(\frac{z}{n}\right)\right)^{-1} \\
&= \left(1 + \frac{z}{n} \right) \exp\left(-\frac{z}{n}\right) \\
&= \left(1 + \frac{z}{n} \right) \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{z}{n}\right)^k \\
&= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{z}{n}\right)^k
+ \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{z}{n}\right)^{k+1} \\
&= 1
+\sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \left(\frac{z}{n}\right)^k
+ \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \left(\frac{z}{n}\right)^{k+1}
\end{aligned}$$
Therefore, we have
$$\begin{aligned}
0 \leq
\left| n\left( \frac{ 1 + \frac{z}{n}}{\exp\left(\frac{z}{n}\right)} - 1 \right)\right|
&= \left|\sum_{k=1}^{\infty} \frac{(-1)^k}{k!}
\frac{z^k}{n^{k-1}}
+ \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{z^{k+1}}{n^k} \right| \\
&\leq |z|\sum_{k=1}^{\infty} \left(\frac{|z|}{n}\right)^{k-1}
+ |z|\sum_{k=0}^{\infty} \left(\frac{|z|}{n}\right)^{k} \\
&= 2|z|\sum_{k=0}^{\infty} \left(\frac{|z|}{n}\right)^k
\end{aligned}$$
Then, since $z$ is fixed, as $n \to \infty$, we have $\frac{|z|}{n} \to 0 < 1$. And this implies
$$\begin{aligned}
0 \leq
\lim_{n \to \infty}\left| n\left(\frac{ 1 + \frac{z}{n}}{\exp\left(\frac{z}{n}\right)} - 1 \right)\right|
&\leq \lim_{n \to \infty} 2|z|\sum_{k=0}^{\infty} \left(\frac{|z|}{n}\right)^k \\
&= 2|z|\lim_{n \to \infty} \lim_{m \to \infty}\sum_{k=0}^{m} \left(\frac{|z|}{n}\right)^k \\
&= 2|z|\lim_{n \to \infty} \lim_{m \to \infty}
\frac{1 - (\frac{|z|}{n})^{m+1}}{1 - \frac{|z|}{n}} \\
&= 2\lim_{n \to \infty}
\frac{\frac{|z|}{n}}{1 - \frac{|z|}{n}} \\
&= 2 \times \frac{0}{1 - 0} \\
&= 0
\end{aligned}$$
So by squeeze theorem, we have
$$\lim_{n \to \infty}\left| n\left(\frac{ 1 + \frac{z}{n}}{\exp\left(\frac{z}{n}\right)} - 1 \right)\right| = 0$$
and this implies
$$\lim_{n \to \infty} n\left(\frac{ 1 + \frac{z}{n}}{\exp\left(\frac{z}{n}\right)} - 1 \right) = 0$$
Then, by Euler's formula and De Moivre's formula and Lemma 1 and Lemma 3, we have
$$\begin{aligned}
\left(\exp \left(\frac{z}{n}\right)\right)^n
&= \left(\exp \left(\frac{x}{n} + i\frac{y}{n}\right)\right)^n\\
&= \left(\exp\left(\frac{x}{n}\right)\exp\left(i\frac{y}{n}\right)\right)^n \\
&= \left(\exp\left(\frac{x}{n}\right)\right)^n
\left(\exp\left(i\frac{y}{n}\right)\right)^n\\
&= \left(e^{\frac{x}{n}}\right)^n
\left( \cos \frac{y}{n} + i \sin \frac{y}{n} \right)^n \\
&= e^x (\cos y + i \sin y)\\
&= \exp(x) \exp(iy)\\
&= \exp(x + iy) \\
&= \exp(z)
\end{aligned}$$
So we have
$$\lim_{n \to \infty} \left(\frac{ 1 + \frac{z}{n}}{\exp\left(\frac{z}{n}\right)} \right)^n
= \lim_{n \to \infty} \frac{ (1 + \frac{z}{n})^n}{(\exp(\frac{z}{n}))^n}
= \frac{\lim_{n \to \infty} (1 + \frac{z}{n})^n}{\exp(z)}
= 1$$
and this implies
$$
\lim_{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^n = \exp(z)
$$
And here we finish the proof. $\square$