Consider $f(x)=1-x$; then $f'(x)=-1$, so $f'(2)=-1$. Also
$$
\frac{1}{2}\bigl(-x+\sqrt{x^2+4f(x)}\,\bigr)=
\frac{1}{2}\bigl(-x+\sqrt{x^2-4x+4}\,\bigr)=
\frac{1}{2}\bigl(-x+|x-2|\,\bigr)=
\begin{cases}
-1 & \text{if $x\ge2$}\\
1-x & \text{if $x<2$}
\end{cases}
$$
Thus the function $f$ is a solution of the problem only on the interval $[2,\infty)$. On $(-\infty,2]$ we have
$$
\frac{1}{2}\bigl(-x+\sqrt{x^2+4f(x)}\,\bigr)=1-x\ne f'(x)
$$
On the other hand, if $g(x)=-x^2/4$, $g'(x)=-x/2$ and
$$
\frac{1}{2}\bigl(-x+\sqrt{x^2+4g(x)}\,\bigr)=-\frac{x}{2}
$$
Thus the function $g$ is a solution over $\mathbb{R}$.
If you want a solution in a complete neighborhood of $2$, you have to choose the second one.