Here are some of the lower homotopy groups. Let $k\geq 1$ and $n\geq 2$. We have the following isomorphisms:
$$\pi_q(S^k\times D^n)\cong \pi_q(S^k)\quad\text{and}\quad \pi_q(S^k\times\partial{D^n})\cong\pi_q(S^k)\times\pi_q(S^{n-1}).$$
Therefore $S^k\times D^n$ is $(k-1)$-connected and $S^k\times\partial{D^n}$ is $\min\{k-1,n-2\}$-connected. Furthermore, we can regard $S^k\times\partial{D^n}$ as a subcomplex of $S^k\times D^n$, so that $(S^k\times D^n,S^k\times\partial{D^n},x_0)$ is a CW-pair.
Hence, the projection $p:(S^k\times D^n,S^k\times\partial{D^n})\to((S^k\times D^n)/(S^k\times\partial{D^n}),\ast)$ induces a map
$$p_*:\pi_q(S^k\times D^n,S^k\times\partial{D^n},s_0)\to\pi_q\left(\frac{S^k\times D^n}{S^k\times\partial{D^n}},\ast \right)$$
which is an isomorphism for $2\leq q\leq k+1+\min\{k-1,n-2\}$ and an epimorphism for $q=k+1+\min\{k-1,n-2\}+1$. So for $2\leq q\leq k+1+\min\{k-1,n-2\}$, it suffices to compute the relative group.
Now, we consider the piece:
$$\pi_q(S^k)\times\pi_q(S^{n-1})\xrightarrow{\ p_{1}\ }\pi_q(S^k)\xrightarrow{}\pi_q(S^k\times{D^n},S^k\times\partial{D^n})\xrightarrow{\ \partial\ }\pi_{q-1}(S^k)\times\pi_{q-1}(S^{n-1})\xrightarrow{p_1}\pi_{q-1}(S^k)$$
of the long exact sequence of the pair $(S^k\times D^n,S^k\times\partial{D^n},s_0)$. The map $p_1$ above is given by the composition:
$$\pi_q(S^k)\times\pi_q(S^{n-1})\xrightarrow{\ \cong\ }\pi_q(S^k\times\partial{D^n})\xrightarrow{\ i_* \ }\pi_q(S^k\times D^n)\xrightarrow{\ \cong \ }\pi_q(S^k)\times\pi_q(D^n)\xrightarrow{\ \cong \ }\pi_q(S^k)$$
and following an element through shows that this really is just the projection
$$\pi_q(S^k)\times\pi_q(S^{n-1})\to \pi_q(S^k).$$
Exactness then implies that
$$\pi_q(S^k\times D^n,S^k\times\partial{D^n},s_0)\cong \ker{p_1}=\pi_{q-1}(S^{n-1}),\quad q\leq k+1+\min\{k-1,n-2\}.$$