Yes, a group is an ordered pair: the first element of the pair is a set (the underlying function of the group), and the second is a binary function on that set (which, in set theory, is actually a set too).
Saying something like "$G$ is abelian" is an abuse of notation: technically it's incorrect, but it has only one reasonable interpretation (this is only true btw if we aren't considering two different group structures on the same set, which we sometimes do). It's used because it's slightly easier to write than "$(G, \circ)$ is abelian."
Incidentally, given that "$e$" isn't actually part of the tuple $(G, \circ)$, that's also an abuse of notation - one should write $e_G$ (to distinguish it from the identity of some other group) or similar. But, again, we can get away with it in contexts where it won't lead to confusion. Also, it's worth pointing out that many texts treat groups as ordered triples of the form $(G, \circ, e)$.