we can write $$\left[ \bigg(1+\frac{1}{n}\bigg)\bigg(1+\frac{2}{n}\bigg)\bigg(1+\frac{3}{n}\bigg)\cdots\bigg(1+\frac{n}{n}\bigg) \right] = n!\binom{2n}{n}\cdot \frac{1}{n^n}$$
Using $$\binom{2n}{n}\leq \binom{2n}{0}+\binom{2n}{1}+\cdots \cdots \binom{2n}{2n}=2^{2n} = 4^n$$
And Using Power mean Inequality $$\frac{\binom{n}{0}^2+\binom{n}{0}^2+\cdot \cdots \binom{n}{n}^2}{n+1}\geq \bigg[\frac{\binom{n}{0}+\binom{n}{1}+\cdots \cdots \binom{n}{n}}{n+1}\bigg]^2 = \frac{4^n}{(n+1)}$$
So $$\binom{2n}{n}=\binom{n}{0}^2+\binom{n}{0}^2+\cdot \cdots \binom{n}{n}^2>\frac{4^n}{n+1}$$
So $$\frac{4^n}{n+1}<\binom{2n}{n}\leq 4^n\Rightarrow \left(\frac{4}{(n+1)^{\frac{1}{n}}}\right)<\binom{2n}{n}^{\frac{1}{n}}\leq 4$$
So using Sequeeze Theorem $$\lim_{n\rightarrow \infty}\left(\frac{4}{(n+1)^{\frac{1}{n}}}\right)<\lim_{n\rightarrow \infty}\binom{2n}{n}^{\frac{1}{n}}\leq \lim_{n\rightarrow \infty}4$$
So we get $\displaystyle \lim_{n\rightarrow \infty}\binom{2n}{n}^{\frac{1}{n}} = 4$ and Since, $\displaystyle \lim\limits_{n \to \infty} \frac{(n!)^{1/n}}{n} = e^{-1}$ we get $$\displaystyle \lim\limits_{n \to \infty}\left[ \bigg(1+\frac{1}{n}\bigg)\bigg(1+\frac{2}{n}\bigg)\bigg(1+\frac{3}{n}\bigg)\cdots\bigg(1+\frac{n}{n}\bigg) \right]^{\frac{1}{n}} = \frac{4}{e}$$