$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{k = 1}^{\infty}\braces{%
-\,{\ln\pars{1 - 1/\bracks{k + 1}^{\,2}} \over \ln\pars{2}}} = 1:\ {\large ?}}$.
\begin{align}
&\sum_{k = 1}^{\infty}\braces{%
-\,{\ln\pars{1 - 1/\bracks{k + 1}^{\,2}} \over \ln\pars{2}}} =
-\,{1 \over \ln\pars{2}}\sum_{k = 1}^{\infty}
\ln\pars{k^{2} + 2k \over \bracks{k + 1}^{\,2}}
\\[5mm] = &\
-\,{1 \over \ln\pars{2}}\sum_{k = 1}^{\infty}
\bracks{-\int_{0}^{1}{\dd t \over \pars{k + 1}^{2} - t}} =
{1 \over \ln\pars{2}}\int_{0}^{1}\sum_{k = 0}^{\infty}
{1 \over \pars{k + 2 - \root{t}}\pars{k + 2 + \root{t}}}\,\dd t
\\[5mm] = &\
{1 \over \ln\pars{2}}\int_{0}^{1}
{\Psi\pars{2 - \root{t}} - \Psi\pars{2 + \root{t}} \over -2\root{t}}\dd t
\end{align}
$\ds{\Psi}$ is the
Digamma Function.
Note that $\ds{\Psi\pars{z} \equiv \totald{\ln\pars{\Gamma\pars{z}}}{z}}$. $\ds{\Gamma}$ is the
Gamma Function.
With $\ds{\root{t} \mapsto t}$
:
\begin{align}
&\sum_{k = 1}^{\infty}\braces{%
-\,{\ln\pars{1 - 1/\bracks{k + 1}^{\,2}} \over \ln\pars{2}}} =
-\,{1 \over \ln\pars{2}}\int_{0}^{1}
\bracks{\Psi\pars{2 - t} - \Psi\pars{2 + t}}\dd t
\\[5mm] = &\
-\,{1 \over \ln\pars{2}}\bracks{\vphantom{\Large A}%
-\ln\pars{\Gamma\pars{2 - t}} - \ln\pars{\Gamma\pars{2 + t}}}_{\ 0}^{\ 1} =
{1 \over \ln\pars{2}}
\ln\pars{\Gamma\pars{1}\Gamma\pars{3} \over \Gamma^{2}\pars{2}} = \bbx{\ds{1}}
\end{align}
because $\ds{\Gamma\pars{1} = \Gamma\pars{2} = 1}$ and
$\ds{\Gamma\pars{3} = 2! = \color{#f00}{2}}$.