Let X be a normed space over $\mathbb{C}$ and Y be a finite-dimensional space over $\mathbb{C}$ with supremum norm. If K is a subspace of X and $f:K\rightarrow Y$ is a bounded linear operator, prove that f can be extended to a bounded linear operator F from X into Y such that $||F|| =||f||$.
For each $x \in K$, $f(x) \in Y$. Let $\lbrace e_1,\cdots , e_n \rbrace$ be a basis for Y then $f(x)=\sum_{i=1}^n a_i e_i$, then $$||f||=\sup \lbrace |f(x)|\; ; \; ||x||_X=1\rbrace=sup|\sum_{i=1}^n a_i e_i|\leq \sum_{i=1}^n a_i \sup{e_i}$$
Then I put $F=f(x)$ when $x \in K$ and $F(x)=0$ otherwise.