Let $\phi \in \mathcal{S}(\mathbb R^d)$ and let $f:\mathbb R^d\to \mathbb C$ be function. Let $1\leq p \leq \infty.$ Question:
Can we say $\|\mathcal{F}^{-1} (\phi \hat{f})\|_{L^{p}} \leq C \|\hat{f}\|_{L^{p}}$? Can we say $\|\mathcal{F}^{-1} (\phi \hat{f})\|_{L^{p}} \leq C \|f\|_{L^{p}}$? $C$ is some constant.
(where $\mathcal{F}^{-1}$is inverse Fourier transform, and $\hat{.}$ is Fourier transform)
Motivation: What is a Bernstein's multiplier estimate? Is this applicable in this kind of situation?