The red part that vanishes of the proof of A.Γ. is not justified, because we don't know whether, for at least one symmetric matrix $B$ so that $B u=u$, one can guarantee the existence of a matrix $u_{\perp}$ with orthonormal columns so that $u_{\perp} (\hat{B} − B^k) u_{\perp}=0$ and $u^T_{\perp} u = 0$. This assumption is necessary to prove that the red term is zero in the solution set. I found it very difficult to prove this directly, which led me to derive a new proof for your problem.
Let $W$ and $\hat{B}$ be symmetric matrices such that, for fixed $y$ and $s$, $$ W y = s \tag{1}$$ and $W$ is positive definite. Denote $\hat{B}_{+} = W^{1/2} \hat{B} W^{1/2}.$ Let $B$ be an arbitrary symmetric matrix, and call $B_{+} = W^{1/2} B W^{1/2}$. Hence, $$\begin{align}\|B -\hat{B}\|_{F,W} = & \| W^{1/2} B W^{1/2} -W^{1/2} \hat{B} W^{1/2} \|_{F} \\ & \| B_{+} - \hat{B}_{+} \|_{F} \end{align}. $$ Additionally, notice that, by $(1)$, $$ y_{+} = W^{1/2} y = W^{-1/2} s = s_{+}.\tag{2}$$ Consequently, we have that, $ y = B s$ if and only if $$ B_{+} s_{+} = (W^{1/2} B W^{1/2})( W^{-1/2} s ) = W^{1/2} B s = W^{1/2} y = W^{- 1/2} s = s_{+}.$$ Thus, the symmetric matrix $B_{+}$ has the eigenvalue one with eigenvector $s_{+}$. Thus, by the Spectral decomposition, there is a singular symmetric matrix $B_{++}$ with $B_{++} s_{+} = 0$ so that $B_{+} = B_{++} + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}$. Now, $$\|B_{+} - \hat{B}_{+}\|_{F} = \|B_{++} + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T} - \hat{B}_{+}\|_{F}$$. Now, notice that $$ \|\hat{B}_{+} s_{+} - s_{+} \|^2_{2} = \| (\hat{B}_{+} - (B_{++} + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}) s_{+}\|^2_{2} \leq \| \hat{B}_{+} - B_{+} \|^2_{F} \| s_{+}\|^2_{2} $$ Thus, $$ \dfrac{\|\hat{B}_{+} s_{+} - s_{+}\|^2}{\|s_{+}\|^2} \leq \|B_{+} - \hat{B}_{+}\|^2_{F}.$$ Now, if we find a symmetric matrix $A$ so that $A s_{+} = 0$ and $$\|A + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}-\hat{B}_{+}\|^2_{F} = \dfrac{\|B_{+} s_{+} - s_{+}\|^2}{\|s_{+}\|^2},$$ we have found the solution, and it is $$B_{\text{sol}} = A+\dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}, \tag{3}$$ since $B_{\text{sol}} s_{+} = s_{+}$ and $B_{\text{sol}}$ is symmetric. Indeed, take $$ A = (I - \dfrac{1}{\|s_{+}\|^2}s_{+}s_{+}^T) \hat{B}_{+}(I - \dfrac{1}{\|s_{+}\|^2}s_{+}s_{+}^T).$$ Notice that the matrix $A$ is symmetric and $A s_{+} = 0$. Additionally, recall that $\| u v^{T}\|_{F} = \|u\|_{2} \|v\|_{2}$, $\|Z\|^2_{F} = \text{tr} (Z Z^{T})$ and $\text{tr}(A B) = \text{tr} (B A)$. Using these properties we obtain $$\|A\|^2_{F} = \text{tr} ( A \hat{B}_{+}) = \| (I - \dfrac{1}{\|s_{+}\|^2}s_{+}s_{+}^T) \hat{B}_{+}\|^2_{F} = \|\hat{B}_{+}\|^2_{F} - \dfrac{1}{\|s_{+}\|^2_{2}} \| \hat{B}_{+} s_{+}\|^2_{2}.$$
And finally,
$$\begin{align}
& \|A + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}-\hat{B}_{+}\|^2_{F} \\
= {} & \| A + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}\|^2_{F} + \|\hat{B}_{+} \|^2_{F} - 2 \text{tr} (A + \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}) \hat{B}_{+} \\
= {} & \| A \|^2_{F} + \|\dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T}\|^2_{F} + 2 \text{tr} (A \dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T} ) + \|\hat{B}_{+} \|^2_{F} - 2 \text{tr} (\dfrac{1}{\|s_{+}\|^2_{2}} s_{+} s_{+}^{T} \hat{B}_{+}) - 2 \text{tr} (A \hat{B}_{+}) \\
= {} & \| A \|^2_{F} + 1 + \|\hat{B}_{+} \|^2_{F} - \dfrac{2}{\|s_{+}\|^2_{2}} s_{+}^{T} \hat{B}_{+} s_{+} - 2 \|A\|^2_{F} \\
= {} & - \| A \|^2_{F} + 1 + \|\hat{B}_{+} \|^2_{F} - \dfrac{2}{\|s_{+}\|^2_{2}} s_{+}^{T} \hat{B}_{+} s_{+} \\
{} = {} & - \|\hat{B}_{+}\|^2_{F} + \dfrac{1}{\|s_{+}\|^2_{2}} \| \hat{B}_{+} s_{+}\|^2_{2} + 1 + \|\hat{B}_{+} \|^2_{F} - \dfrac{2}{\|s_{+}\|^2_{2}} s_{+}^{T} \hat{B}_{+} s_{+}\\
{} = {} & \dfrac{1}{\|s_{+}\|^2_{2}} \| \hat{B}_{+} s_{+}\|^2_{2} + 1 - \dfrac{2}{\|s_{+}\|^2_{2}} s_{+}^{T} \hat{B}_{+} s_{+}\\
{} = {} & \dfrac{1}{\|s_{+}\|^2_{2}} \| \hat{B}_{+} s_{+} - s_{+}\|^2_{2},
\end{align}$$ as we wanted to show, and the solution is $(3).$
P.S.: With a similar technique, we can show that the solution of the problem $$\text{minimize}_{B \in \mathbb{R}^{n \times n}}\quad \|B - A\|^2_{F} \quad \text{subject to } \quad B s = 0 \text{ and } B^{T} = B $$ is $$ B = (I - \dfrac{1}{\|s\|^2_{2}}s s^{T}) A (I - \dfrac{1}{\|s\|^2_{2}}s s^{T}).$$