For the sake of exploring other options, consider the substitution
$$y = \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} = \frac{\sqrt{\tan x}}{\sqrt{\tan x}+1} \implies x = \arctan \frac{y^2}{(1-y)^2}$$
so $0<y<1$; then
$$\int \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} \, dx = \int \frac{2(1-y)y^2}{1-4y+6y^2-4y^3+2y^4} \, dy$$
The denominator can be expressed as a difference of squares and subsequently as a product of quadratic polynomials with real coefficients,
$$\begin{align*}
& 1-4y+6y^2-4y^3+2y^4 \\
&= (1-y)^4 + y^4 \\
&= (1-y)^4 \color{red}{+ 2(1-y)^2y^2} + y^4 \color{red}{- 2(1-y)^2y^2} \\
&= \left[(1-y)^2 + y^2\right]^2 - 2(1-y)^2y^2 \\
&= \left((1-y)^2 + y^2 \color{red}+ \sqrt2\,(1-y)y\right) \left((1-y)^2 + y^2 \color{red}- \sqrt2\,(1-y)y\right) \\
&= \left(1 - (2-\sqrt2)y + (2-\sqrt2)y^2\right) \left(1 - (2+\sqrt2)y + (2+\sqrt2)y^2\right)
\end{align*}$$
and hence the integrand can be decomposed into
$$\frac1{\sqrt2} \left[\frac y{1 - (2+\sqrt2)y + (2+\sqrt2)y^2} - \frac y{1 - (2-\sqrt2)y + (2-\sqrt2)y^2} \right]$$
For $0<a<4$ (which contains $2\pm\sqrt2$), we may use the elementary result
$$\begin{align*}
& \int \frac{y}{1-ay+ay^2} \, dy \\
&= \frac1{\sqrt{4a-a^2}} \arctan \left(\sqrt{\frac a{4-a}} (2y-1)\right) + \frac1{2a} \log\left\lvert1-ay+ay^2\right\rvert + C
\end{align*}$$