Can I have help with this problem?
$$\sum_{r=1}^\infty \frac{(r+1)^2}{r!}=5e-1.$$
Can I have help with this problem?
$$\sum_{r=1}^\infty \frac{(r+1)^2}{r!}=5e-1.$$
$$\sum_{r=1}^{\infty}\frac{(r+1)^2}{r!}=\sum_{r=1}^{\infty}\frac{r^2}{r!}+2\sum_{r=1}^{\infty}\frac{r}{r!}+\sum_{r=1}^{\infty}\frac{1}{r!}=\sum_{r=1}^{\infty}\frac{r}{(r-1)!}+2\underbrace{\sum_{r=1}^{\infty}\frac{1}{(r-1)!}}_{e}+\underbrace{\sum_{r=1}^{\infty}\frac{1}{r!}}_{e-1}$$ thus $$\sum_{r=1}^{\infty}\frac{(r+1)^2}{r!}=\sum_{r=1}^{\infty}\frac{r-1+1}{(r-1)!}+3e-1=\underbrace{\sum_{r=2}^{\infty}\frac{1}{(r-2)!}}_{e}+\underbrace{\sum_{r=1}^{\infty}\frac{1}{(r-1)!}}_{e}+3e-1=5e-1$$