From the Euler-Maclaurin Summation Formula, we have
$$\begin{align}
\sum_{k=1}^K (x^{k^2}-x^{(k+\alpha)^2})&=\int_0^K (e^{y^2\log(x)}-e^{(y+\alpha)^2\log(x)})\,dy\\\\
&+\frac{e^{-K^2|\log(x)|}-e^{-(K+\alpha)^2|\log(x)|}-(1-e^{-\alpha^2|\log(x)|})}2 \\\\
&+\log(x)\int_0^K \left(2ye^{-y^2|\log(x)|}-2(y+\alpha)e^{-(y+\alpha)^2|\log(x)|}\right)P_1(y)\,dy \\\\
&=\int_0^\alpha e^{-y^2|\log(x)|}\,dy-\int_K^{K+\alpha}e^{-y^2|\log(x)|}\,dy\\\\
&+\frac{e^{-K^2|\log(x)|}-e^{-(K+\alpha)^2|\log(x)|}-(1-e^{-\alpha^2|\log(x)|})}2 \\\\
&+\log(x)\int_0^K \left(2ye^{-y^2|\log(x)|}-2(y+\alpha)e^{-(y+\alpha)^2|\log(x)|}\right)P_1(y)\,dy \tag 1\\\\
\end{align}$$
Taking the limit as $K\to \infty$ in $(1)$ reveals
$$\begin{align}
\sum_{k=1}^\infty (x^{k^2}-x^{(k+\alpha)^2})&=\int_0^\alpha e^{-y^2|\log(x)|}\,dy
-\frac{1-e^{-\alpha^2|\log(x)|}}2 \\\\
&+\log(x)\int_0^\infty \left(2ye^{-y^2|\log(x)|}-2(y+\alpha)e^{-(y+\alpha)^2|\log(x)|}\right)P_1(y)\,dy \tag 2
\end{align}$$
Taking the limit as $x\to 1^-$ in $(2)$ yields the coveted result
$$\lim_{x\to ^-1}\sum_{k=0}^\infty (x^{k^2}-x^{(k+\alpha)^2})=\alpha$$
as was to be shown!