Prove That : $$ \int_{0}^{\infty} \ln x\left[\ln \left( \dfrac{x+1}{2} \right) - \dfrac{1}{x+1} - \psi \left( \dfrac{x+1}{2} \right) \right] \mathrm{d}x = \dfrac{\ln^2 2}{2}+\ln2\cdot\ln\pi-1 $$
where $\psi(z)$ denotes the Digamma Function.
This integral arose from my attempt to find an alternate solution to Problem 5, i.e,
$$ {\large\int}_0^\infty\frac{\ln\left(x^2+1\right)\,\arctan x}{e^{\pi x}-1}dx=\frac{\ln^22}2+\ln2\cdot\ln\pi-1 $$
Here's my try : We have the identity,
$$ \displaystyle \int_0^\infty \frac{\ln y}{(y+a)^2 + b^2}\,\mathrm{d}y \; = \; \tfrac{1}{2b}\,\tan^{-1}\tfrac{b}{a}\,\ln(a^2+b^2) $$
Since substituting $y \mapsto \dfrac{a^2+b^2}{y}$ gives,
$$\displaystyle \int_0^\infty \frac{\ln y}{(y+a)^2+b^2} \, \mathrm{d}y =\ln(a^2+b^2)\int_0^\infty \frac{dy}{y^2+2ay+a^2+b^2} - \int_0^\infty \frac{\ln y}{(y+a)^2+b^2} \, \mathrm{d}y $$
$$ \implies \displaystyle \int_0^\infty \frac{\ln y}{(y+a)^2 + b^2}\,\mathrm{d}y \; = \; \tfrac{1}{2b}\,\tan^{-1}\tfrac{b}{a}\,\ln(a^2+b^2) $$
Putting $a=1$ and $b=x$, we have,
$ \displaystyle \int_0^\infty \frac{2x \ln y}{(y+1)^2 + x^2}\,\mathrm{d}y \; = \; \,\,\ln(1+x^2) \ \tan^{-1}x \tag{1} $
Now, we have to prove,
$$\displaystyle {\large\int}_0^\infty\frac{\ln\left(x^2+1\right)\,\tan^{-1}x}{e^{\pi x}-1} \mathrm{d}x=\frac{\ln^22}2+\ln2\cdot\ln\pi-1$$
Let,
$$\displaystyle \text{I} = {\large\int}_0^\infty\frac{\ln\left(x^2+1\right)\,\tan^{-1}x}{e^{\pi x}-1} \mathrm{d}x $$
$$\displaystyle = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2x \ln y}{[(y+1)^2 + x^2][e^{\pi x} - 1]} \mathrm{d}x \ \mathrm{d}y \quad (\text{From 1}) \tag{2}$$
The inner integral is of the form,
$$ \displaystyle \text{J} = \int_{0}^{\infty} \dfrac{x}{(x^2+a^2)(e^{\pi x} - 1)} \ \mathrm{d}x \ ; \ a = (y+1)$$
I have proved here that,
$\displaystyle \int_{0}^{\infty} \dfrac{\log(1-e^{-2a\pi x})}{1+x^2} \mathrm{d}x = \pi \left[\dfrac{1}{2} \log (2a\pi ) + a(\log a - 1) - \log(\Gamma(a+1)) \right] \tag{3}$
Differentiating both sides w.r.t. $a$, substituting $ a \mapsto \frac{a}{2} $ and $ x \mapsto \frac{x}{a} $, we get,
$\displaystyle \int_{0}^{\infty} \dfrac{x}{(x^2+a^2)(e^{\pi x} - 1)} \ \mathrm{d}x = \dfrac{1}{2} \left[ \dfrac{1}{a} + \ln \left( \dfrac{a}{2} \right) - \psi \left( \dfrac{a}{2} + 1 \right) \right] \tag{4}$
Putting $(4)$ in $(2)$, we have,
$$ \displaystyle \text{I} = \int_{0}^{\infty} \left[ \dfrac{\ln y}{y+1} + \ln y \ln \left( \dfrac{y+1}{2} \right) - \ln y \ \psi \left( \dfrac{y+1}{2} + 1 \right) \right] \mathrm{d}y $$
$ = \displaystyle \int_{0}^{\infty} \ln x\left[\ln \left( \dfrac{x+1}{2} \right) - \dfrac{1}{x+1} - \psi \left( \dfrac{x+1}{2} \right) \right] \mathrm{d}x \tag{*}$
Since the original question has already been proved in the link, so $(*)$ must be equal to the stated closed form. It also matches numerically.
I'm looking for some method to evaluate $(*)$ independent of Problem 5.
Any help will be greatly appreciated.