We have the function $\displaystyle{y=f(x_1, x_2)=x_1\cdot x_2^2}$ and the set $S=\{x\in [0, \infty)^2 \mid f(x_1, x_2)\leq 1\}$.
I want to check if the set is convex.
$$$$
Let $x=(x_1, x_2) , y=(y_1, y_2)\in S$, then $x_1\cdot x_2^2\leq 1$ and $y_1\cdot y_2^2\leq 1$.
We want to show that \begin{equation*}\lambda x+(1-\lambda )y=\lambda (x_1, x_2)+(1-\lambda )(y_1, y_2)=(\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2)\in S\end{equation*} so we have to show that \begin{equation*}f\left (\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2\right ) \leq 1\end{equation*}
We have the following: \begin{align*}f&\left (\lambda x_1+(1-\lambda )y_1, \lambda x_2 +(1-\lambda )y_2\right )=(\lambda x_1+(1-\lambda )y_1)\cdot( \lambda x_2 +(1-\lambda )y_2)^2 \\ &=(\lambda x_1+(1-\lambda )y_1)\cdot( \lambda^2 x_2^2+2\lambda x_2(1-\lambda )y_2 +(1-\lambda )^2y_2^2)\\ &= \lambda x_1\cdot( \lambda^2 x_2^2+2\lambda (1-\lambda )x_2y_2 +(1-\lambda )^2y_2^2)+(1-\lambda )y_1\cdot( \lambda^2 x_2^2+2\lambda (1-\lambda )x_2y_2 +(1-\lambda )^2y_2^2) \\ & = \lambda^3 x_1x_2^2+2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3y_1y_2^2 \\ & \leq \lambda^3 +2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3\end{align*}
Is this correct so far?
How could we continue?
$$$$
EDIT:
What about the set $\tilde{S}=\{x\in [0, \infty)^2 \mid f(x_1, x_2)> 1\}$ ?
Doing the same as above we get $$\ldots> \lambda^3 +2\lambda^2 (1-\lambda )x_1 x_2y_2 +\lambda (1-\lambda )^2x_1 y_2^2+ \lambda^2 (1-\lambda )x_2^2y_1+2\lambda (1-\lambda )^2x_2y_1y_2 +(1-\lambda )^3$$
How could we continue?

