How do I find the limit of the following sequence:
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{k^r}{n^{r+1}}.$$
How do I find the limit of the following sequence:
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{k^r}{n^{r+1}}.$$
Hint. One may recognize a Riemann sum, by writing, $$ \sum_{k=1}^n\frac{k^r}{n^{r+1}}=\frac{1}{n}\cdot\sum_{k=1}^n\left(\frac{k}{n}\right)^{r}. $$