Let $f : \small \mathbb{R} → \mathbb{R}$ be a continuous nondecreasing function. Let $A$ be a nonempty, bounded set.
(a) Show that $f(\sup A) = \sup(f(A)).$
(b) If we drop the assumption that $f$ is continuous, what can you say?
Attempt:
$x\le \sup(A)\ \ \forall x \in A$
$\Rightarrow f(x)\le f(\sup(A))\ \ \forall x \in A$
$\Rightarrow \sup(f(A))\le f(\sup(A))\ \ $
also, $f(x)\le \sup(f(A))\ \ \forall x \in A$
$\Rightarrow x\le f^{-1}(\sup(f(A)))\ \ \forall x \in A$
$\Rightarrow \sup(A)\le f^{-1}(\sup(f(A)))\ \ $
$\Rightarrow f(\sup(A))\le \sup(f(A))\ \ $
Thus $f(\sup(A))= \sup(f(A))$
But in the Highlighted line I have used that $f$ is injective, but $f$ may not be injective as $f$ is given to be non decreasing. So how to correct that part.