Consider $f_n=\sin(nx),\,x\in[0,1]$. In order to show that this is not an equicontinuous family, take $x=0,y=\frac{1}{N}$ where $N \in \mathbb{N}$ can be arbitrarily large, so $\forall \, \delta>0 \rightarrow y<\delta$.
Now, if we consider $|f_N(x)-f_N(y)|=|\sin(N\frac{1}{N})|=|\sin(1)|$, hence there exists $\varepsilon_0 > 0$ such that $\forall \, \delta>0,\, \exists\, x=0,\, y=\frac{1}{N},\, N \in \mathbb{N} \, \text{ such that } |x-y|=y<\delta, \, \text{ but } |f_N(x)-f_N(y)| \geq \varepsilon_0$
Is there anything not right with that logic?