0

I would like to find the following limit for any $x\in\mathbb R^m$:

$$\lim_{n\to\infty} \sqrt[n]{\sum_{i=1}^m |x_i|^n}$$

Is this even possible and if so, how do I start? As I do not even know what $x$ is I am not quite sure where to begin. Any hints?

3 Answers3

2

The answer is the maximum value of $|x_i|$.

The limit for any $n$ is minimal when only one $x_i$ is non-zero, and maximal if all $x_i$ are equal.

The sum over $m$ terms is limited. Work from there as $\lim_{n\to\infty} \sqrt[n]{m} = 1$

Pieter21
  • 3,515
2

Let $M=\max\{|x_1|,\ldots,|x_m|\}$. Then $$ M^n\leq\sum_{i=1}^m|x_i|^n\leq m M^n\implies M\leq\sqrt[n]{\sum_{i=1}^m|x_i|^n}\leq\sqrt[n]{m}M. $$ Now use the Squeeze Theorem and the fact that $\sqrt[n]{m}\to 1$ as $n\to\infty$.

yurnero
  • 10,675
0

Let $i$ be such that $x_p=\min_{1\le i\le m} |x_i|$ and $j$ be such that $x_q=\max_{1\le i\le m} |x_i|$

Then $\{\sum_{i=1}^m |x_i|^n\}^{\frac{1}{n}}\le (m|x_q|^n)^{\frac{1}{n}}=|x_q|.m^{\frac{1}{n}}$

Also $\{\sum_{i=1}^m |x_i|^n\}^{\frac{1}{n}}\ge m|x_p|^n)^{\frac{1}{n}}=|x_p|.m^{\frac{1}{n}}$

Now for any $c>0$ ;$\lim c^{\frac{1}{n}}=1$

Hence $\lim_{n\to \infty} m^{\frac{1}{n}}=1$

So $x_p\le\lim_{n\to \infty}\{\sum_{i=1}^m |x_i|^n\}^{\frac{1}{n}}\le x_q$

Learnmore
  • 31,675
  • 10
  • 110
  • 250