Question:
Find the value of the limit of the following expression such that $x$ approaches to zero
$$\frac{\cos(\sin x)-\cos x}{x^4}.$$
My attempt:

Question:
Find the value of the limit of the following expression such that $x$ approaches to zero
$$\frac{\cos(\sin x)-\cos x}{x^4}.$$
My attempt:

$$\frac{\cos(\sin x)-\cos x}{x^4}=\dfrac24\cdot\dfrac{\sin\dfrac{\sin x+x}2}{\dfrac{\sin x+x}2}\cdot\dfrac{\sin\dfrac{x-\sin x}2}{\dfrac{x-\sin x}2}\cdot\dfrac{{\sin x+x}}x\cdot\dfrac{x-\sin x}{x^3}$$
Now use $\lim_{y\to0}\dfrac{\sin y}y=1$
and from Are all limits solvable without L'Hôpital Rule or Series Expansion,
$$\lim_{t\to0}\dfrac{t-\sin t}{t^3}=\dfrac1{3!}$$
It's much simpler with *Taylor's expansion at order $4$.
Remember that
and that we can compose polynomial expansions. So in the numerator, we substitute $\;x-\dfrac{x3}6$ to $\sin x$, truncating powers of $x$ beyond degree $4$:
so that finally $$\frac{\cos(\sin x)-\cos x}{x^4}=\frac{1-\dfrac{x^2}2+\dfrac{5x^4}{24}-1+\dfrac{x^2}2-\dfrac{x^4}{24}+o(x^4)}{x^4}=\frac{\dfrac{x^4}{6}+o(x^4)}{x^4}=\frac16+o(1).$$